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Abstract

Direct numerical simulation of flow past a stationary circular cylinder at yaw angles (a) in the range of 0–601 was

conducted at Reynolds number of 1000. The three-dimensional (3-D) Navier–Stokes equations were solved using the

Petrov–Galerkin finite element method. The transition of the flow from 2-D to 3-D was studied. The phenomena that

were observed in flow visualization, such as the streamwise vortices, the vortex dislocation and the instability of the

shear layer, were reproduced numerically. The effects of the yaw angle on wake structures, vortex shedding frequency

and hydrodynamic forces of the cylinder were investigated. It was found that the Strouhal number at different yaw

angles (a) follows the independence principle. The mean drag coefficient agrees well with the independence principle.

It slightly increases with the increase of a and reaches a maximum value at a ¼ 601, which is about 10% larger than that

when a ¼ 01. The root-mean-square (r.m.s.) values of the lift coefficient are noticeably dependent on a.
r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

When a cylinder is exposed to a steady approaching flow, the wake structure downstream of the cylinder is three-

dimensional (3-D) as long as the Reynolds number (Re) is larger than about 170, even before it becomes turbulent

(Roshko, 1954; Bloor, 1964; Williamson, 1988; Norberg, 2001). The Reynolds number is defined by Re ¼ UD/n, where
U is the incoming velocity in the streamwise direction, D is the cylinder diameter, n is the fluid kinematic viscosity. The

wake flow is in the transitional regime when Reynolds number is between 170 and 300 and becomes fully turbulent as

Reynolds number is larger than about 400. In most of civil and mechanical engineering applications, the Reynolds

number is usually much larger than 400. Therefore, the wake flow is normally turbulent.

Extensive studies on turbulent wake flows past a circular cylinder have been conducted using both experimental and

numerical methods. Williamson (1988, 1991, 1992) investigated the three-dimensional transition of the flow behind a

circular cylinder. It was found that the three-dimensionality and turbulence in a wake are triggered by instabilities

within the vortex formation region. The instabilities include the generation of the small-scale streamwise vortices, large-

scale vortex dislocations and small-scale shear-layer instability vortices. When Reynolds number is in the turbulent

regime, the hydrodynamic forces on the circular cylinder fluctuate with time due to the vortex shedding. Schewe (1983)
e front matter r 2009 Elsevier Ltd. All rights reserved.
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reported the experimental results of the drag coefficient CD and lift coefficient CL over a wide range of Reynolds

number. The CD and CL are defined by CD ¼ FD/(rDU2/2) and CL ¼ FL/(rDU2/2), where r is the fluid density, FD and

FL are drag and lift forces on a unit length of a cylinder in the flow direction and that in the cross-flow direction,

respectively. According to Schewe’s results, the force coefficients and the vortex shedding frequency are not sensitive to

Reynolds number as long as the latter is in the subcritical regime (300oReo3� 105).

Since the wake flow behind a circular cylinder is three-dimensional, it is desirable that the flow is simulated by a 3-D

model in order to obtain a full understanding of the wake flow. Two-dimensional numerical models tend to overestimate

the lift coefficient and the vortex shedding frequency because the variation of flow in the cylinder’s spanwise direction

(Kang, 2006; Zhao et al., 2007; Tsutsui et al., 1997) is ignored. Karniadakis and Triantafyllou (1992) and Zhang and

Dalton (1998) simulated the 3-D flow past a circular cylinder using three-dimensional models for Reynolds number in the

range of 100–500. Their findings about the transition of the flow to turbulence agree well with those found in experiments

(Williamson, 1992). Lei et al. (2001) studied the effect of the computational domain size on the accuracy in the simulation

of 3-D flow past a circular cylinder. They found that the size of the computational domain in the spanwise direction must

be at least four times the cylinder diameter in order to simulate the 3-D wake flow accurately.

In many engineering applications, such as the flow past cables, subsea pipelines, risers, etc., the direction of the flow

may not be perpendicular to the structure. This kind of flows can be represented by a wake flow downstream of a yawed

cylinder in laboratory studies and numerical simulations. In this case, the fluid velocity in the spanwise as well as in the

cross-flow directions may be of similar magnitudes. It is expected that the three-dimensional effect and the wake flow

patterns of a yawed cylinder will be stronger than that of a wake when the cylinder is perpendicular to the flow. Flows

past a yawed cylinder have been studied by a number of investigators both experimentally [e.g. King (1977); Ramberg

(1983); Kozakiewicz et al. (1995); Thakur et al. (2004)] and numerically [e.g. Chiba and Horikawa (1987); Marshall

(2003); Lucor and Karniadakis (2003)]. Experimental results showed that the force coefficients and the Strouhal

number, which are normalized by the velocity component perpendicular to the cylinder, are approximately independent

on the yaw angle. This is often called the independence principle or the cosine law in the literature. Kozakiewicz et al.

(1995) found that the independence principle can be applied to stationary cylinders in the vicinity of a plane wall for a

yawed angle between 01 and 451. In case of flow past a yawed cylinder of finite length, it was shown that the wake

vortices far from the upstream end of the cylinder are approximately parallel to the cylinder. The vortices near the

upstream end of the cylinder are aligned at an angle larger than the cylinder yaw angle (Ramberg, 1983; Thakur et al.,

2004). Lucor and Karniadakis (2003) simulated flow past a yawed cylinder of infinite length at two large yaw angles,

namely 601 and 701. They reported that the vortex shedding angles of the vortices in the wake of a yawed cylinder are

somewhat less than the cylinder’s yaw angle.

In the present study, flow past an infinitely long stationary circular cylinder at yawed angles in the range of 0–601 was

investigated numerically. The definition of the coordinate system and the yaw angle a are given in Fig. 1, where a ¼ 01

represents the right attack angle case (i.e. the flow direction is perpendicular to the cylinder). Direct simulation of the

Navier–Stokes equations was performed without employing any turbulent models. The Reynolds number Re was 1000.

This Reynolds number was selected based on following considerations. Firstly, the wake flow at this Reynolds number

is fully turbulent according to previous studies. It has been shown that the hydrodynamic forces are not sensitive to the

Reynolds number as long as the later is in the subcritical regime (300oReo3� 105). Secondly a relative small value of

Reynolds number in the subcritical regime allows a direct simulation of the Navier–Stokes equations being carried out

with affordable computational costs. Therefore, the present choice of the Reynolds number was a compromise of the

flow regimes and the computational cost. The effects of the yaw angles on the wake flow, the hydrodynamic force and

the vortex shedding frequency were examined.
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Fig. 1. Definition of the coordinate system and the computational domain: (a) coordinate system and (b) computational domain.
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2. Numerical method

2.1. Governing equations and boundary conditions

The nondimensional Navier–Stokes equations and the continuity equation in Cartesian coordinate system x0y0z0

(Fig. 1) are

ui;t þ ujui;j þ p;i �
1

Re
ui;jj ¼ 0, (1)

ui;i ¼ 0, (2)

where ui is the velocity component in the xi-direction, (x1,x2,x3) ¼ (x0,y0,z0), the subscripts in f,t and f,i represent the

derivatives of f with respect to time t and x0i, respectively, and p is the pressure. The computational domain is shown in

Fig. 1(b). In the present study, flow past a cylinder of infinite length was simulated by a truncated domain and a periodic

boundary condition at the top and bottom boundaries. The left and right boundaries are parallel to the cylinder axis. The

initial values of the velocity and the pressure in the whole domain are zero. In order to see how the vortex shedding is

developed, no perturbation is introduced. The boundary conditions for the governing equations are as follows:

At the left boundary (inlet), a unit velocity component in the x0-direction is given and the velocity components in the

y0 and z0 directions are zero. The pressure gradient in the flow direction is zero. At the right boundary the pressure and

the velocity gradients in the x0-direction are zero. At the two-side boundaries that are parallel to the x0–z0 plane, a free-

slip boundary condition is employed, namely, the velocity component and the pressure gradient perpendicular to the

boundary are zero.

When the flow approaches the cylinder at a yawed angle, the velocity in the cylinder’s spanwise direction can be

significant. The free-slip boundary condition is not a good choice at the top and bottom boundaries (two boundaries

that are parallel to the x0–y0 plane) because it prohibits the flow to pass these boundaries. In this study, a periodic

condition was imposed by setting velocity and pressure values at the top and the bottom boundaries to be equal to each

other. At the cylinder surface the no-slip boundary condition is applied. The Navier–Stokes equations were solved using

the Petrov–Galerkin finite element method (PG-FEM). Details of the PG-FEM can be found in Appendix.
3. Numerical results

Numerical simulations were carried out at Reynolds number Re ¼ 1000 and yaw angles ranging from 01 to 601. The

cases for a4601 were not covered in this study because of the difficulties in generating quality computational meshes. It

is expected that the dimensional force in the cross cylinder direction for a4601 is much smaller than in other cases. So,

flows with a4601 may not be of as much engineering interests as those with smaller yaw angles. Parallel computational

program code is developed for the calculations conducted in this study. The calculations were performed on a cluster of

computers located in the advanced computing facility in Western Australia (iVEC). Thirty-two processors are used for

each of the calculations. The simulations were carried out up to the non-dimensional time of Ut/D ¼ 450 to ensure that

vortex shedding is fully developed.

3.1. Mesh dependence study

A mesh dependence study was carried out before the effect of a on the flow was investigated. Three kinds of meshes

were used to simulate the flow for a ¼ 01, i.e. coarse, medium and fine meshes. The length of the cylinder (Ls) is 9.6D.

Table 1 shows the mesh characteristics, the mean drag coefficient, r.m.s. lift coefficient and the Strouhal number

computed according to the three kinds of meshes. In the present study, the drag and lift coefficients are defined as

CD ¼ FD=ðrDLsU
2
n=2Þ; CL ¼ FL=ðrDLsU

2
n=2Þ, (3a, b)

where FD is the drag force in the x-direction, FL is the lift force in the y-direction, Ls is the cylinder length, Un(�U cos a)
is the velocity component normal to the cylinder and U is the incoming velocity. The coordinates x and y are shown in

Fig. 1. The FD and FL are calculated by integrating the pressure and the shear stress along the whole cylinder surface.

The Strouhal number is defined by St ¼ fsD/Un with fs being the frequency of the fluctuating lift force.

The mean drag coefficient C̄D for the fine mesh is 1.17, which is in the range of the measured results between 1.0 and

1.2 (Braza et al., 1986; Niemann and Hölscher, 1990). The Strouhal number for the fine mesh is 0.21, which agrees well
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Table 1

Mesh dependence check for a ¼ 01 and Re ¼ 1000.

Mesh density Coarse Medium Fine

Node number 286 000 426 800 743 461

Node number along cylinder circumstance 80 80 96

Node number along cylinder length 64 96 96

Mesh size D1 next to the cylinder surface 0.0025 0.0015 0.001

Mean drag coefficient C̄D 1.092 1.141 1.170

R.m.s. lift coefficient C0L 0.310 0.327 0.335

Strouhal number (St) 0.202 0.209 0.210

Fig. 2. Computational mesh for a ¼ 451.
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with the experimental data between 0.207 and 0.22 (Roshko, 1954). By comparing the results for the mean drag

coefficient, r.m.s. lift coefficient and Strouhal number calculated using the medium mesh and those using the fine mesh,

it can be seen that the differences of the above quantities between the two meshes are 2.5%, 2.4% and 0.5%,

respectively. Therefore, the meshes used for yaw angles examined were of densities the same as that of the fine mesh

described in Table 1.

It has been shown that the computational domain size in the cylinder spanwise direction must be larger than 4D in

order to simulate the three-dimensional wake flow accurately (Lei et al., 2001). In this study, the computational domain

size in the z0-direction (Fig. 1) was kept at 9.6D for all values of a, which resulted in the cylinder length varying with a as
Ls ¼ 9.6/cos a (Fig. 1). The width (W) and the length (L) of the domain were 20D and 45D, respectively. The distance

between the cylinder and the inlet boundary was 16D. Fig. 2 shows the computational mesh around the cylinder for yaw

angle a ¼ 451. The element size in the cylinder spanwise direction was 0.1D. The node number along the circumference

of a cross section of the cylinder surface was 96. The near wall mesh density can be evaluated by the nondimensional

distance of a nodal point to the wall: y+ ¼ ufD/n, where D is the distance from the wall and uf is the friction velocity.

The nondimensional distance of the nodes next to the wall was less than 0.3 for all values of a and at least three layers of

grid points were located within y+o1. The number of nodal points increases with the increase of a. It was 743,461 for

a ¼ 01 and 1,479,561 for a ¼ 601.

3.2. Wake flow features

Fig. 3 shows the time history of the total and the sectional force coefficients for a ¼ 01. The total force coefficients are

defined by Eq. 3(a) and (b) while the sectional force coefficients are defined by

CDðzÞ ¼ FDðzÞ=ðrDU2
n=2Þ; CLðzÞ ¼ FLðzÞ=ðrDU2

n=2Þ, (4a, b)
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Fig. 3. Time history of force coefficients for a ¼ 01: (a) total force coefficients for a ¼ 01 and (b) sectional force coefficients for a ¼ 01.
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Fig. 4. Vorticity iso-surfaces for a ¼ 01 and Ut/D ¼ 75: (a) oxj j ¼ 1 and (b) ozj j ¼ 1.
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where FD(z) and FL(z) are the drag and lift forces acting on a unit length of the cylinder, respectively. They are obtained

by integrating the pressure and shear stress over the circumference of a cross section of the cylinder surface.

The periodicity of the force fluctuations can be clearly seen in Fig. 3. Because the computational mesh, the boundary

condition and the approaching flow are symmetric with respect to the x–z plane, the wake flow remains two-

dimensional for a long time after the start of the computation. The flow is two-dimensional and the vortex shedding

flow does not vary along the cylinder’s spanwise direction until Ut/D ¼ 65. The forces fluctuate at high amplitude and

have a good repeatability when the flow is 2-D. The transition of the flow from 2-D to 3-D occurs at around Ut/D ¼ 65.

When the wake flow becomes totally three-dimensional (Ut/DX85), the fluctuating amplitudes of the drag and lift

decrease dramatically, and the amplitudes of the force coefficients vary with time. The total force coefficients CD and CL

shown in Fig. 3(a) are actually the results of the averaged sectional force coefficients CD(z) and CL(z) over the total

cylinder length. The averaging process filters out the variation of the forces along the cylinder axis. This is the reason

why the curves of the total force coefficients (Fig. 3(a)) are smoother than those of the sectional force coefficients

(Fig. 3(b)). In the numerical modelling, the time period required for transition of the wake flow from 2-D to 3-D can be

shortened by introducing an artificial disturbance (for example, by introducing an uneven velocity distribution along

the cylinder spanwise direction) at the early stage of the calculation. This would reduce the computational time

consumption remarkably. The disturbance is not used here because the transition from 2-D to 3-D is one of the

objectives of the present investigation.

The wake flow in the transitional period between Ut/D ¼ 65 and 85 is quite similar to that at low Reynolds number in

the transitional regime (Williamson, 1992). Fig. 4 shows the three-dimensional iso-surfaces of the streamwise and

spanwise vorticity components behind the cylinder for a ¼ 01 at Ut/D ¼ 75 when the wake flow transits from 2-D to

3-D. The vorticity components are defined as ox ¼ @w/@y�@v/@z, oy ¼ @u/@z�@w/@x and oz ¼ @v/@x�@u/@y. Here u, v

and w are the velocity components in the x, y and z directions, respectively. The green colour represents positive iso-

surfaces and the blue colour represents negative ones in Fig. 4. At this stage, the streamwise vortices occur. The

variation of the streamwise vortices in the spanwise direction is very regular. A row of rib-like streamwise vortices are

generated and shed from the cylinder at nearly the same phase. The vortex shedding shown in Fig. 4(a) is quite similar
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to the finer-scale streamwise vortex structure observed by Williamson (1992). Williamson (1992) reported that the

spanwise wavelength is 3D for Re ¼ 180 and 1D for Re ¼ 230. The spanwise wavelength in Fig. 4 is about 0.74D, which

is slightly smaller than that at Re ¼ 230 reported by Williamson (1992). This is probably due to the difference in

Reynolds number. The streamwise vortices can be seen in the scale of oxj j ¼ 1 after Ut/D465 and become stronger and

stronger with time. Although the streamwise vortices exist prior to Ut/D ¼ 65, they are too weak to be observed in the

iso-surface plot of the scale oxj j ¼ 1. In Fig. 4(b), the iso-surfaces of the spanwise vorticity components are still in the

shape of continuous tubes. But they are uneven along the spanwise direction. In this instant, the turbulence in the vortex

formation region is still rather weak. As the vortices are shed from the cylinder, they are distorted by the streamwise

vortices. The vortex structures shown in Fig. 4 agree well with those observed previously at low Reynolds numbers

(Williamson, 1992).

When turbulence intensifies, the shear layer instability happens under the effect of the uneven streamwise vorticity.

The instability of the shear layer conversely enhances the turbulence. After Ut/D ¼ 85, the flow becomes fully three-

dimensional. Bloor (1964) and Wei and Smith (1986) reported that the shear layer instability is the way of transition to

turbulence at high Reynolds numbers (above 1000). Fig. 5(a) shows the iso-surfaces ( oxj j ¼ 1) of the streamwise

vorticity for a ¼ 01 at the moment Ut/D ¼ 400. The streamwise vorticity iso-surfaces are strongly irregular in the wake.

Some of the iso-surfaces have similar shapes as those shown in Fig. 4(a), but they are in a very irregular alignment. It

was found that the vortices were not shed from the cylinder surface at the same time, which was different from that

shown in Fig. 4(a). They stretch in directions which deviate slightly from the streamwise direction. The interaction

among them (combination, splitting or cancellation) leads to a chaos. Karniadakis and Triantafyllou (1992) also

reported a chaotic state of the turbulent flow in the wake of a circular cylinder. Fig. 5(b) shows the iso-surfaces

( ozj j ¼ 1) of the spanwise vorticity. In the fully turbulent wake, the phase variation of the spanwise vortex shedding

along the cylinder becomes very strong. From Fig. 5(b), it can be seen that the continuity of the tubular iso-surfaces of

oz ¼ �1 breaks when the spanwise vortices are convected downstream, leading to the dislocation of the vortices. The

spanwise vortices in Fig. 5(b) break down faster than that in Fig. 4(b).

When the flow approaches the cylinder at a yawed angle, the wake flow features are different. Fig. 6(a) shows the

computed three-dimensional streamlines in the wake of the cylinder for a ¼ 451. Fig. 6(c) reproduces the flow

visualization of the streaklines by Kozakiewicz et al. (1995) for the same a. The streamlines that approach the leading

edge of the cylinder bend to the cross cylinder direction after they slide some distance along the spanwise direction.

After passing the cylinder, some of them are trapped into the principal spanwise vortex and move in the spanwise

direction of the cylinder in helical tracks, while others move in the mean stream direction. The velocity at the centre of

the principle vortex points to the cylinder’s spanwise direction. Due to this flow pattern in the wake of a yawed cylinder,

it is expected that, if there are particles in the fluid (such as suspended sediment or pollutant), the spanwise streamlines

would make them drift along the cylinder spanwise direction for a certain distance. Once the principal spanwise vortex

is shed from the cylinder surface, the streamlines that are trapped in it are released and their directions change back to

the incoming flow direction. The present calculated streamlines in the wake agree well with the flow visualization by

Kozakiewicz et al. (1995) (Fig. 6(c)) at the same yaw angle.

Fig. 7 shows the contours of the cross-axis vorticity magnitude oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

x þ o2
y

q
, the spanwise vorticity oz, and the

relative spanwise velocity ~w ¼ w=UT for a ¼ 451, where UT ¼ U sin a is the incoming flow velocity component parallel

to the cylinder. Both cross-axis vortices and the spanwise vortices reach their maximum values (in either negative or

positive direction) at about the same positions (Fig. 7(a) and (b)). By comparing Fig. 7(b) and (c), it can be seen that the

spanwise velocity reaches its minimum values where the cross-axis vorticity reaches its maximum. Moore (1956),

Marshall (2003) and Thakur et al. (2004) also reported the phenomenon of deficit (spanwise velocity lower than the

surrounding fluid, within the wake vortex cores) of the spanwise velocity within the vortex cores. Fig. 8 shows

the distribution of the time averaged ~w over the period of 150oUt/Do400 along the x-axis. It can be seen that the

minimum mean ~w occurs at about x/D ¼ 1.25 for all a. It decreases with the increase of a. The reduction of ~w is the

strongest when a ¼ 601.

Fig. 9(a) shows the iso-surface of the spanwise vorticity ozj j ¼ 0:5 for a ¼ 451 at Ut/D ¼ 400. The spanwise vortices

in the wake of the cylinder exhibit helical shapes. Experimental visualizations (Friehe and Schwarz, 1968; Ramberg,

1983) of flow past a yawed cylinder showed that the spanwise vortices in the wake of the cylinder were oriented at

approximately the same angle as the cylinder for ao451. The shedding angle of the spanwise vortex in Fig. 9(a) is well

defined. Apparently, it is parallel to the cylinder axis. Fig. 9(b) is the iso-surface of the spanwise vorticity ozj j ¼ 0:25 for
a ¼ 601. The vortex shedding angle is less well defined as compared with Fig. 9(a) even though the wake vortices are

overall parallel to the cylinder. The shape of the vortices is twisted. Locally the spanwise vortices may or may not be

parallel to the cylinder. Ramberg (1983) and Lucor and Karniadakis (2003) found that the spanwise wake vortices

oriented at a smaller angle than the yaw angle of the cylinder if a4451, which was slightly different from what was
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observed in the present study. It was found that vortices right behind the cylinder propagate not only in the incoming

flow direction, but also in the cylinder’s spanwise direction. This is because of the spanwise streamlines as shown in

Fig. 6(a). Vortices far away downstream the cylinder propagates mainly in the incoming flow direction.
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Fig. 10 shows the mean streamlines in the x–y plane at z ¼ 0 for various yaw angles. The mean streamlines are

obtained by averaging the velocity over the time period between Ut/D ¼ 150 and 450. Results for the case of a ¼ 01

obtained using a two-dimensional numerical model (Zhao et al., 2007) are also included in Fig. 10(d). It is seen that the

3-D model results are significantly different from that of the 2-D model. The size of the recirculation zone from the 2-D

simulation is about 50% smaller than those obtained using the 3-D model for a ¼ 01. This difference between the 2-D

and 3-D solutions were also found by Mittal and Balachandar (1995) and Lei et al. (2001). The length of the

recirculation zone in the x-direction is about 1.5D for a ¼ 01, which is close to the value of 1.35 reported by Honji and

Taneda (1969). The shape and size of the recirculation zone in the wake of the cylinder for different a are almost the

same. The difference between the length of the recirculation zone in the x-direction at a ¼ 301 and that for a ¼ 01 is

about 12%, and that between a ¼ 601 and 01 is about 9%.

Fig. 11 shows the time-averaged mean pressure distribution along the cylinder’s circumference in the cross-cylinder

plane at z ¼ 0. The mean pressure is obtained by averaging the pressure over the time period from Ut/D ¼ 150 to 450.

The pressure coefficient in Fig. 11(a) is defined as Cp ¼ (p�ps)/(rU2/2), where ps is the pressure at the position of y ¼ 0.

It can be seen that, with the increase of a, the pressure difference between the leading and trailing edges decreases. This

makes the dimensional force in x-direction on the cylinder decrease with the decreasing a, if the incoming flow velocity
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M. Zhao et al. / Journal of Fluids and Structures 25 (2009) 831–847 839
U is constant. The pressure coefficients Cpn in Fig. 11(b) are normalized by the velocity component Un which is

perpendicular to the cylinder, namely, Cpn ¼ (p�ps)/(rUn
2/2). It can be seen that there is little difference among the

pressure coefficients for various yaw angles if they are normalized by Un. This means that the independence principle
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applies to the pressure along the cylinder surface. In Fig. 11(b), the results obtained by Lei et al. (2001) using the finite

difference method (FDM) are also included. The two sets of numerical result for a ¼ 01 agree well with each other.

Fig. 12(a) shows the streamlines along the cylinder surface plotted according to the time-averaged friction velocity.

The friction velocity vector ~Uf is defined by ~Uf ¼ ð~t=rÞ
1=2, where ~t is the shear stress vector. Fig. 12(b) shows the

distribution of the friction velocity components Ufs and Ufz, which are defined at the top-left corner of the figure, along

a circumference of the cylinder at z ¼ 0. The position angle y is defined as the angle measured from the front edge of the

cylinder. It can be seen that the friction velocity is in the spanwise direction of the cylinder at the front edge of the

cylinder (Ufs ¼ 0). It biases towards the cross-cylinder plane when it goes to the trailing edge of the cylinder. At about

y ¼ 1001, which is the separation point of the shear layer, the direction of the friction velocity changes back to the

positive z direction again. It can be seen in Fig. 12(b) that the friction velocity Ufz is always positive. This leads to a

shear force on the cylinder surface in the z direction.
3.3. Strouhal number

Fig. 13 shows the time history of the force coefficients for a ¼ 451. The transition of the flow from 2-D to 3-D occurs

after Ut/D ¼ 110, which is delayed compared with that for a ¼ 01 (Fig. 3). It is found that the increase of a delays the

transition in the numerical simulation. The flow becomes fully three-dimensional after Ut/D ¼ 150 for the maximum

calculated a ( ¼ 601). A FFT analysis is applied to the time series of the fluctuating lift coefficients over the period of

150oUt/Do450. Fig. 14 shows the power spectra of the sectional lift coefficients at the cross section z ¼ 0. It can be

seen that all spectra have a pronounced sharp peak, indicating apparent vortex shedding at these frequencies. For

a ¼ 01, the peak occurs at fD/Un ¼ 0.210, which agrees well with previous results in cross-flows. With the increase of the

yaw angle, the peak locations do not change apparently. Moreover, the peak region for a ¼ 601 is broader than that for
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a ¼ 01. This indicates that with the increase of the yaw angle, the rate of the breakdown of the vortex structures is

increased. Fig. 15 shows the comparison of the computed Strouhal number with the experimental data by Ramberg

(1983) and the fitted curve from experimental data by Van Atta (1968). The Strouhal number is defined as the peak

frequencies shown in Fig. 14 and the velocity component normal to the cylinder. In Fig. 15, St0 represents the Strouhal

number for a ¼ 01. The results by Ramberg (1983) are those for flow past a cylinder of 90D long. The three sets of data

agree with each other very well when ap301 and all of them follow the cosine law. The discrepancy happens when

a ¼ 301and it increases with the increase of a. The computed Storuhal number at a ¼ 601 is 20% smaller than the

measured values by Ramberg (1983). There is also large difference between the experimental data by Ramberg (1983)

and that by Van Atta (1968) when a ¼ 601. The discrepancies among these data may be attributed to the following

reasons, among many factors. Firstly, the length of the cylinder used in the experiment is different from that used in the

numerical modelling. In the present study, a periodic boundary condition at the two ends was employed to simulate an

infinite long cylinder. This implies that the flow can come into or out of the computational domain through the top and

bottom boundaries as shown in Fig. 1. In the experiment of Ramberg (1983) the top and the bottom boundaries are

glass walls which are wind-tight. Secondly, the Reynolds number for Van Atta’s curve is in the transitional regime,

whereas that in the present study and that of Ramberg are in the turbulent regime.
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3.4. Force coefficients

The variation of the wake flow in the cylinder’s spanwise direction (as discussed above) makes the sectional lift force

coefficient on a unit length of the cylinder vary along the cylinder. Fig. 16 shows the time history of the sectional lift

coefficient for a ¼ 451 at three sections. The total and sectional force coefficients are calculated by Eqs. (3) and (4),

respectively. It is seen that the amplitudes and the frequencies of the lift force fluctuation at these three sections are

basically the same. However, there is phase difference among them. This phenomenon indicates that there are phase

differences among vortex shedding at different cross sections. If the force is averaged over time, no difference is found in

terms of mean force at different cross-sections.

Fig. 17 shows the statistic values of the force coefficients, which were obtained according to the force time series

between Ut/D ¼ 150 and 450. The sectional force coefficients are measured at the cross section of z ¼ 0. The total and

sectional mean (time-averaged) drag coefficients in Fig. 17(a) are almost the same. The mean drag coefficient C̄D

changes little when a increases from 01 to 301. It increases slightly with the increase of a when a4301 and reaches its

maximum value of C̄D ¼ 1:27 at a ¼ 601, which is 8% larger than the right attack angle case (a ¼ 01). There is apparent

difference between the r.m.s. sectional drag coefficient and the r.m.s. total drag coefficient (Fig. 17(b)); the former is

about twice of the latter when a is between 01 and 301. When a4301, the r.m.s. sectional drag coefficient increases with

the increase of a, whereas the r.m.s. total drag coefficient decreases. The r.m.s. sectional lift coefficient is around 7–10%

larger than the r.m.s. total lift coefficient in the calculated range of a (Fig. 17(c)). The difference between the total and

the sectional r.m.s. force coefficients is mainly because of the phase variation of the vortex shedding along the cylinder’s

spanwise direction. The r.m.s. lift coefficient decreases slightly with the increase of a when ap301 and reaches its

minimum value at a ¼ 301. The r.m.s. lift coefficient at a ¼ 301 is about 25% smaller than that of a ¼ 01. It increases

with a when a4301. The r.m.s. lift coefficient at a ¼ 601is 20% larger than that at a ¼ 01. The 2-D numerical results

overestimate the mean drag coefficient, r.m.s. drag coefficient and especially the r.m.s. lift coefficient because the 2-D

model omits the variation of the flow in the cylinder’s spanwise direction. This is equivalent to that the vortex shedding

is synchronized in the spanwise direction. The overestimation of force coefficients by the 2-D models had been reported

by Zhao et al. (2005) and Lei et al. (2000).
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4. Conclusions

Flow past a circular cylinder at yaw angles in the range of 0–601 was investigated numerically by solving the three-

dimensional Navier–Stokes equations directly using a finite element method. The results were compared with the flow

visualization in the experiments. The effects of the yaw angle on vortex structures and the force coefficients were

examined. The results are summarized as follows:
(1)
 In the numerical simulation the flow in the early stage of the transition period from 2-D to 3-D is similar to the flow

when Reynolds number is in the transitional regime. The streamwise vortices occur at the beginning of the

transition. The pattern of the streamwise vortices changes from regular to irregular. The streamwise vortices become

stronger with time and affect the shear layer at the late stage of the transition period. The vortex dislocation

happens at the end of the transition period.
(2)
 Near the centre of the principal spanwise vortex, the streamlines are in the spanwise direction of the cylinder and in

a helical shape. The velocity at the centre of the principal vortex points to the cylinder’s spanwise direction. This

makes the velocity in the vortex right behind the cylinder to have a strong spanwise component. When vortices are

far downstream of the cylinder, they are convected in the incoming flow direction.
(3)
 The computed spanwise vortices are parallel to the cylinder for all a. This leads to the Strouhal number closely

following the cosine law. The numerical results of Strouhal numbers agree well with the experimental data when

ap301 and are slightly smaller than experimental data when a4301. The maximum discrepancy (E20%) between

the computed Strouhal number and the measured values happens at a ¼ 601.
(4)
 The r.m.s. sectional force coefficients, which are computed by integrating the pressure and shear stress around the

circumference of a cross-section of the cylinder surface, are different from the r.m.s. total force coefficients

calculated by integrating over the whole cylinder surface. The r.m.s. sectional drag coefficient is about twice of the

r.m.s. total drag coefficient. The r.m.s. sectional lift coefficient is also 7–10% larger than the r.m.s. total lift

coefficient. However, the mean sectional drag coefficient is the same as the mean total drag coefficient.
(5)
 The independence principle applies very well to the mean drag coefficient when a is in the range of 0–301. The

maximum mean drag coefficient happens when a ¼ 601, and is about 10% larger than that at a ¼ 01. The r.m.s. lift
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coefficient reaches its minimum value at a ¼ 301, which is 25% smaller than that when a ¼ 01. The r.m.s. lift

coefficient for a ¼ 601 is 20% larger than the right attack angle case.
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Appendix. Petrov–Galerkin finite element formulation

The computational domain was divided into hexahedron eight-node tri-linear elements. Fig. 2 is an example of the

meshes for a ¼ 451. One-third of the elements are not shown in Fig. 2 in order to see the mesh distribution along the

span direction of the cylinder. The pressure and the velocity in the computational domain are interpolated by the shape

function by f ¼
P

Nkfk, where f represents velocity or pressure, fk is the value of f at kth node and Nk is the shape

function. The weighted residual formula for Eq. (1) is expressed asZ
O
ðWui;t þWujui;j þ

1

Re
W ;jui;j þWp;iÞdO�

Z
G

Wui;n dG ¼ 0, (A1)

where W is the weighting function, O represents the computational domain, G represents the boundary of the domain,

ui,n is the gradient of ui in the normal direction of the boundaries outwards. When performing the integration

numerically within an element, a hexahedron eight-node finite element is transformed into a cubic element with a

boundary length of 2 as shown in Fig. 18. The weighted residual formulation (A1) in the transformed coordinate x1x2x3
system is expressed asZ

Ō
ðWui;t þWUaui=a þ �abW =aui=b þWxa;ip=aÞJ dŌ�

Z
Ḡ

Wui;nI dḠ ¼ 0, (A2)

where dO ¼ J dŌ, dG ¼ I dḠ, J and I denote the transformation Jacobians for domains and boundaries between

the physical domain and the transformed domain, subscript ‘‘/a’’ represents the derivative with respect to xa (a ¼ 1, 2

and 3), Ua ¼ ujxa,j and eab ¼ (1/Re)xa,jxb,j.

The conventional Galerkin finite element method uses the shape function as the weighting function. The spurious

node-to-node oscillations or wiggles occur if the solution is performed by a simple Galerkin finite element method.

These wiggles often corrupt the solutions. The Petrov–Galerkin scheme is employed in this numerical model for

eliminating the wiggles. In the Petrov–Galerkin formulation the standard Galerkin weighting functions are modified by

adding a streamline upwind perturbation, which acts only in the flow direction (Brooks and Hughes, 1982; Kondo,

1994; Jester and Kallinderis, 2003). The weighting function for the Galerkin finite element method is the shape function,

which is expressed as

W ¼ N1N2N3, (A3)

where Na is the one-dimensional shape function in the xa direction. In the Petrov–Galerkin method the weighting

function is modified as wþ ~w, where ~w is a perturbation function. By introducing the perturbation function, the element
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Fig. 18. Coordinate transformation for a finite element.
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upwind of a node has a heavier weight than that downstream of a node. If the problem is one-dimensional, the

perturbation term is defined by (Brooks and Hughes, 1982)

~W 1 ¼ gU1
~x1D1N1=1, (A4)

where the subscript 1 stands for one-dimensional, D1 is the element size in the transformed domain, the artificial

diffusion coefficient ~x1 is defined as x1 ¼ coth(c)�1/c, where c ¼ U1D1/2e11 and g is a constant. Raymond and Garder

(1976) demonstrated that the phase errors are minimized if the constant g ¼ 1=
ffiffiffiffiffi
15
p

is employed for the transient case.

In the three-dimensional case, the Petrov–Galerkin weighting function is expressed as

ðN1 þ ~W 1ÞðN2 þ ~W 2ÞðN3 þ ~W 3Þ. (A5)

In this finite element model, only first order of ~W a is considered in the weighting function. So, the perturbation

function used in this model is

~W ¼ ð ~W 1N2N3 þN1
~W 2N3 þN1N2

~W 3Þ, (A6)

where ~W a (a ¼ 1, 2 and 3) is obtained by Eq. (A4). The formation of the weighting perturbation function Eq. (A6)

is determined in the transformed domain rather than in the physical domain. If an element’s aspect ratio is about

unity, it does not make much difference from that proposed by Brooks and Hughes (1982). In the boundary layer

next to the wall, however, the size of the elements in the normal direction to the wall is much smaller (sometimes

less than one-tenth) than that in the tangential direction in order to model the high velocity gradient. In the

perturbation function by Brooks and Hughes the maximum element length among three dimensions is used

as the representative element length when calculating the artificial diffusive factor. If an element’s aspect ratio is

high and the flow is not parallel to the element’s length direction, this may lead to significant numerical

diffusion. Excessive numerical diffusion in the cross-flow direction can be avoided by using Eq. (A6) in elements

of high aspect ratio, because different artificial diffusive factors can be used in the three directions of the transformed

domain.

After introducing the perturbation weighting function, the Petrov–Galerkin finite element formula Eq. (A2) is

rewritten asZ
Ō
ððW þ ~W Þui;t þ ðW þ ~W ÞUaui=a þ �abðW þ ~W Þ=aui=b þ ðW þ ~W Þxa;ip=aÞJ dŌ�

Z
Ḡ
ðW þ ~W Þui;nI dḠ ¼ 0.

(A7)

A fractional step method is employed in the time integration of Eq. (A7). The velocity field satisfies the continuity

equation exactly by using the fractional step method. It had been demonstrated that the fractional step method can be

successfully applied to the finite element analysis (Donea et al., 1982; Ramaswamy and Jue, 1992; Ramaswamy, 1988).

In the fractional step method, for a time interval from time nDt to (n+1)Dt, an intermediate velocity is firstly calculated

by time-integrating FEM formula of a momentum equation in which the pressure term is omitted. The intermediate

velocity does not necessarily satisfy the incompressibility condition. The final velocity at time (n+1)Dt is calculated by

solving a momentum equation with only the pressure, which is computed by solving a pressure Poisson equation. The

details of the steps for solving Eq. (A7) are described as follows:
(a)
 A intermediate velocity ûnþ1
i is firstly calculated by omitting pressure term in Eq. (A7). In this step, the convective

term is considered explicitly and the diffusive term implicitly. The equation for ûnþ1
i isZ

Ō
ððW þ ~W Þ

1

Dt
ðûnþ1

i � un
i Þ þ ðW þ

~W ÞUn
aun

i=a þ �abðW þ ~W Þ=aûnþ1
i=b ÞJ dŌ�

Z
Ḡ
ðW þ ~W Þûnþ1

i;n I dḠ ¼ 0, (A8)

where Dt is the computational time step, the subscript n represents the values at the time level nDt.
(b)
 A pressure Poisson equation is solved for the pressure

pnþ1
;jj ¼

1

Dt
ûnþ1

i;i . (A9)

This pressure Poisson equation is obtained by combining the continuity equation Eq. (2) and the Eq. (A11). The

finite element formula for Eq. (A9) is

�

Z
Ō

W ;jpjJ dŌþ
Z
Ḡ

Wp;nI dḠ ¼
Z
Ō

W
1

Dt
ûnþ1

i;i J dŌ. (A10)



ARTICLE IN PRESS
M. Zhao et al. / Journal of Fluids and Structures 25 (2009) 831–847846
(c)
 The final velocity is calculated by including the pressureZ
Ō

1

Dt
W ðunþ1

i � ûnþ1
i Þ þWxa;ip=a

� �
J dŌ ¼ 0. (A11)

Because the upwind scheme is only for dealing with the instability due to the convective term, the perturbation

term ~W is only applied to Eq. (A8). Conventional Galerkin formulas were used to discretize Eq. (A10) and (A11).
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